
© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809753 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 740

Enhanced Linux Load Balancer for Multi-core Processors on the basis

of Average Weight of Tasks

Anurag Sharma

Rajiv Gandhi Proudyogiki

Vishwavidyalaya

School of Information Technology, India

462033

aanurag4321@gmail.com

Jitendra Agrawal

Rajiv Gandhi Proudyogiki Vishwavidyalaya

School of Information Technology, India

462033

jitendra@rgtu.net

Abstract— Due to the rapid growth of computers and high
performance demand by users, single core processors are being
replaced by multicore processors. Multicore processors are
gaining popularity day by day as they contain two or more
cores, placed on the single chip, enabling execution of multiple
tasks present in the system. The distribution of these tasks
across multiple cores such that the cores are equally utilized,
is referred to as load balancing. In order to efficiently utilize
the processing cores and to improve system performance, it is
important to optimize the existing load balancing algorithms
used by operating systems. Existing load balancer of Linux
assigns an equal number of tasks to each core. Despite this,
load imbalance problem remains because the CPU usage of
tasks may vary and size and type of processes may be different
and hence workload gets imbalanced in very less time, requiring
the load balancing to be done frequently. Therefore, the Linux
load balancer performs task migration dynamically, from one
core to another core in order to maintain the load balance
across the cores, however, this task migration results in an
overhead. Thus to minimize the overhead of task migration, the
assignment of the task should be based on the type and size of
the processes. To improve the system performance, therefore, a
new load balancing approach is proposed. In this approach, an
Average Load Balancer (ALB) balances the load among cores
on the basis of type and size of the process i.e. weight of the
tasks. Due to Average Load Balancer the frequency of invoking
load balancer gets reduced and thus the system performance
is improved. The various tests are performed for single and
multiple workload by Phoronix-test-suite tool. The results show
that the ALB improves the performance on an average by
approx 8% in terms of MIPS and approx 5% in terms of
execution time as compared to the existing load balancer.

Keywords: Multi-core Processors, Load Balancing, Aver-

age weight

I. INTRODUCTION

As personal computers have become more prevalent and

more applications are being designed for them, the end user

has seen the need for a faster and more capable systems to

keep up. In single core architecture, speedup has been

achieved by increasing clock speeds but there is a limitation to

increase clock frequency. Another way to achieve speedup is

to add multiple processing cores to a single chip called

multicore architecture.

A multicore processor is a single computing component

with two or more independent actual processing units called

cores, which are the units that execute program instructions.

The multiple cores can run multiple instructions at the same

time, increasing overall speed of program execution. The

cores are typically integrated onto a single integrated circuit die

known as chip multiprocessor or CMP.

The use of multicore architecture has rapidly increased to

develop processors as it improves speed by adding multiple

processing cores to the single chip. However, adding multiple

cores to the single chip processors have many challenges

related to memory, cache coherence, power consumption, load

imbalance among multiple cores etc.

Among these challenges the load balancing between the

cores is one of the big challenges. To equally utilize each core,

the workload among cores must be assigned equally. If the

load becomes imbalanced across the cores, the tasks will be

migrated from overloaded core to the least loaded core. While

migrating the task from one core to another core, there is need

to find out load imbalance. At the time of finding imbalance

we used the Average Weight condition for task migration,

which helps to balance the load.

The multicore processor has very big challenge of im-

proving the performance. The performance of the multicore

system can be improved by increasing MIPS or decreasing the

execution time of the processes. Multicore processor has

several cores which are responsible to execute the task. So, all

the cores must be fully utilized, i.e. the load on the different

cores must be balanced.

The task scheduler has responsibility to allocate the task on

each core whereas load balancer has responsibility to balance

the load on each core. In the Linux kernel 4.4.1 load balancer

is called when the CPU becomes idle, or if fork() or exec() is

executed, or if task wakes up. Load balancer periodically

checks whether the load is balanced or not. If the load is

imbalanced then the tasks will be migrated from the busiest

core to the core which has the less load compared to the

busiest core. Hence, we need to perform task migration.

However, this task migration results in an overhead, and we

should perform load balancing in such a way that the task

migration overhead is reduced.

The existing Linux load balancer performs the load bal-

ancing, but there is possibility to improve the load balancing

performance. Since at runtime the task priority may change

due to the type and the size of the process, the tasks should be

distributed across the cores on the basis of their sizes and

type. But in existing Linux load balancing tasks are assigned

to each core equally in number. The type of the process may

be either CPU bound or IO bound, which is decided based

on the time slice for which it runs on the CPU. A process is

considered a CPU bound process if the process consumes full

default time slice allocated at first time for execution. Every

such CPU bound process is penalized with ’nice’ value. The nice

value of the process is inversely proportional to the CPU usage

of the process. If nice value is increased by some value then the

http://www.jetir.org/
mailto:aanurag4321@gmail.com
mailto:jitendra@rgtu.net

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809753 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 741

usage of CPU percentage will decrease. In the existing

approach the tasks are not fairly distributed
to average number of tasks per core. It balances the load on

cores. This technique provides guarantee of 99% perfect load

balancing during task migration but still it has a limitation. If

tasks are integral multiple number of cores then it works

perfectly otherwise it is required to search the core which has

some empty space to accept the task [1].

T otalnumberof taskspresent

on different cores, because of different CPU usages. Due to

this reason, workload gets imbalanced in lesser time, requiring

the load balancing to be done frequently. This in
T hresholdvalue =

N umberof cores

turn degrades the overall system performance. The aim of the

proposed load balancer is to perform load balancing on the

basis of the average weight of the tasks.

II. RELATED WORK

In [8] Bautista proposed a simple power-aware scheduling

algorithm for multicore systems. This scheduling algorithm

moves the extra workload from overloaded cores to the less

loaded cores. A complete task is moved from overloaded sys-

tem to less loaded cores. This algorithm reduces the energy

consumption while increasing or decreasing the frequency of

the cores. Simple power aware technique is never able to

maintain the workload equal on cores, so all cores are not

equally utilized. This scheme does not split the task so it

moves the complete task to other core. Hence, it requires the

task migration which in turn incurs overhead.

In [9] Raj Kumar introduced the technique of highest

priority task splitting. Task is divided into two portions t1 and

t2. of each splitting task is assigned to next processing core

and t2 is assigned to the last core. Every time a task is

allocated to a processing core, a schedulability test ensures

that the tasks allotted to a core are schedulable with deadline

monotonic. The existing problem in this approach is that all

cores are not equally loaded. Hence it requires task migration

to equalize the load.

In [10] N. Min Allah proposed a scheduling algorithm

which finds the least loaded core and then the lightest task

from the heavy core is shifted to the least loaded core to

maintain the uniform workload on system. The problem in

this approach is that there is no task splitting and all cores are

not equally utilized. Therefore to shift the task we need to

perform task migration.

Kato [12] presented a partitioned scheduling scheme for the

multiprocessors. This technique assigns the tasks to specific

processors an such a way that processor one is filled with

tasks 100 percent utilized and remaining processor are filled

according to some specific value. A task can be split in two

subtasks and these two subtasks are assigned to different

processors. Split tasks are executed in any order. All

processors are not equally utilized because processor 1 is 100

percent utilized and the remaining processors are utilized to

some specific value.

Suchi Johari and Arvind Kumar [1] proposed a method for

load balancing named as average method. The method is best

solution for load balancing. The average number of tasks is

taken as the threshold value. Threshold value refers

Averagenumberof taskpercore =< T hresholdV alue

The Average method gives the best solution for the load

balancing, because this method assigns the equal number of

the tasks to each core. But, practically every tasks has the

different CPU usage. So at run time the load on each core

will be changed. Therefore load may become imbalanced.

Hence in proposed Linux Load Balancer the average number

of tasks on each core is calculated based on their CPU usage.

In this chapter we discussed work done by different

researcher for load balancing. All the existing load balancing

techniques have some limitations. These techniques attempt

to maintain equal workload on all cores but their performance

is not optimum as each technique requires frequent task

migrations resulting into lots of overheads. So, to overcome

the task migration overheads, we have optimized the existing

Linux load balancing technique by reducing the number of

task migrations, using the concept of average weight of the

tasks.

III. PROPOSED APPROACH

This algorithm is an efficient solution for solving load

imbalancing problem on different cores. It balances the load

on different cores and keeps minimum difference of load

across the cores. In this algorithm the Average weight value is

calculated. This Average Weight value is based on the CPU

Usage. The CPU usage of any process is calculated on the

basis of the processes weight. The Linux Completely Fair

Scheduler (CFS) calculates a weight based on the nice value.

The weight is calculated as 1024/(1.25nice value). As the

nice value decreases the weight increases exponentially. The

implementation of the CFS is in kernel/sched/fair.c. Nice

parameter is used to calculate the average weight value.

Average Weight value will help in load balancing.

The Average weight is calculated as sum of weight of the

task present in the run queue divided by the number of

processing units. The total weight sum of maximum number

of task on ith core should be less than or equal to the Average

weight.

This algorithm will help to balance the workload among the

cores. If processes weight sum is multiple of number of

cores then it works perfectly otherwise an extra effort is

required for searching the core which has empty space to

migrate the new task.

• Algorithm for Load Balancing

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809753 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 742

– Find the number of cores present in the multicore

processor i.e. cpu count
– Calculate Average Weight = sum of weight of the

tasks present in the run queue / cpu count;

– Algorithm:

Assign the tasks to each core until the sum of

weight of all the assigned tasks is less then the

average weight

Repeat above process until all the core are not

accessed.

A. Implementation Details

The linux kernel development required the source code

which is available on www.kernel.org and the linux cross

reference site is also available to see the code. The major code

of load balancing and scheduling is in the following files

/source/kernel/sched/*.c

1) /source/kernel/sched/rt.c: For realtime tasks and the

code related to these is available in this file.
2) /source/kernel/sched core.c : Number of logical CPU

details in group and performing load balancing and

other related operation.
3) /source/kernel/sched fair.c : Code related to the

scheduling is written in this file and other data member

and member functions are defined here.
4) /source/kernel/sched sched.h : This header file is

used at various places in source code.
5) / include/linux/interrupt.h/: This is used to initialize

and handle software interrupt.
6) /source/include/linux/jiffies.h: This file contains the

different methods and jiffies value for major time

interval.

Multicore processor has a separate run queue for each core.

Each core selects processes only from its own runqueue to

run. The main data structure used to access the per- CPU

runqueue struct rq is the data structure used in Linux that

contains all the information about a specific runqueue

including no. of running tasks. Structure rq is defined in

¡include/linux/sched.h¿.

IV. TESTING AND RESULTS

This chapter explains all the experimental details. The first

section explains the experimentation details, that is, how to

setup the system and experiment method for single workload

as well as multiple workload . Second section presents the

results and compares the same with existing Linux load

balancer. Third section gives the interpretation of the results

followed by the outcome of the experiments.

A. Steps Used for Experimentation

To imbalance the load on the particular core and to check

the outcome, we need to follow these steps:

• STEP 1: First install the Phoronix-test-suits

• STEP 2: Install various test cases, like 7-Zip compres-

sion, flace audio encoding for CPU intensive tasks, IO

intensive tasks, and Memory Intensive tasks etc.

• STEP 3 : Run any CPU Intensive, or IO intensive task

for example 7-zip Compression which is CPU intensive

task.

• STEP 4 : Find, what is the Process ID of 7-zip

Compression process or any other process with the help

of ’top’ command interface.

• STEP 6 : After finding the process id, assign that task

to the particular core with the help of process id. Then

the current affinity of the task will change. It means that

the task will execute on selected core.

• STEP 7: Analyze the output generated by the bench

mark which we have used for the corresponding task.

The task output varies corresponding to the task type,

it may be either in MIPS or in Seconds.

B. Single Work Load and Multiple Work Load

The single workload means providing the load through

single process, it may be either CPU bound or IO bound, for

example 7zip, Flac-audio, Gzip etc. These processes are

available in phoronix test suite. Table 1 shows the testing

scenario for single workload and Table 2 shows the

comparison of both the Kernel in case of single workload.

TABLE I

TESTING SCENARIO FOR SINGLE WORKLOAD

S.No. Benchmark Process Number of Samples

1. 7zip 50

2. Gzip 50

3. Flac-audio 50

4. Timed Linux Compilation 50

5. RAM Speed SMP 50

6. postmark 50

7. Sunflow Rendering System 50

Note : Single sample is average of 3 - 5 sample records.

TABLE II

COMPARISON OF BOTH THE KERNELS IN CASE OF SINGLE

WORKLOAD

S.No. BenchMark Original Kernel

4.4.1
Modified

Kernel
4.4.1

1. 7zip (MIPS) 12091.5 13113.6

2. Gzip (Seconds) 33.75987 30.1221

3. Flace-audio (Seconds) 11.612979 11.612

4. Timed Linux Compilation
(Seconds)

233.862 203.295

5. RAM Speed SMP
(MBPS)

6557.231 6553.287

6. postmark (TPS) 202.92 188.5

7. Sunflow Rendering Sys-
tem(Seconds)

5.646 5.618

Note : single sample is average of 3 - 5 sample records.

The multiple workload means providing the workload

through multiple processes, they may be either CPU bound or

IO bound or combination of both. For example 7zip, Flac-

audio, Gzip, n-queen etc. These processes are available in

phoronix Test Suite. The combination of different processes

∗

∗

http://www.jetir.org/
http://www.kernel.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIR1809753 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 743

TABLE III
TESTING SCENARIO FOR MULTIPLE WORKLOAD

S.No. Scenario Benchmark Process Set Number of Sam-

ples

1. set1 Timed Linux Compila-
tion, flac-audio

50

2. set2 Gzip, Sunflow Rendering
System

50

3. set3 Flac-audio, Sunflow Ren-
dering System

50

TABLE IV

COMPARISON OF BOTH THE KERNELS IN CASE OF MULTIPLE

WORKLOAD

S.No. BenchMark Original

Kernel
4.4.1

Modified
Kernel
4.4.1

1. Timed Linux Compilation,
flac-audio (Seconds)

257.066 256.712

2. Gzip, Sunflow Rendering Sys-
tem (Seconds)

52.760 39.939

3. Flac-audio, Sunflow Render-
ing System (Seconds)

20.406 19.849

are executed by Phoronix Test Suite on multicore processor.

Table 3 presents the testing scenario for multiple workload

and Table 4 presents the comparison of both the Kernel in

case of multiple workload.

V. RESULTS

A. Comparison of Benchmarks Results with Original Kernel

The load imbalance among the cores can be reduced

by distributing the equal load on all the cores. The table

5 shows the percentage change in the load imbalance on

multicore processors for the given test scenarios for the

average load balancer with respect to the existing load

balancer.

ExistingKernelP er. − P roposedKernelP er.
100

ExistingKernelP erf ormance

TABLE V

PERCENTAGE CHANGE IN LOAD IMBALANCE W.R.T. THE EXISTING LOAD

BALANCER (SINGLE WORKLOAD)

Benchmark Original Load
Balancer

Avg
Load
Bal-
ancer

Percentage
Improve

-ment

7zip (MIPS) 12091.5 13113.6 7.79 %

Gzip (Seconds) 33.75987 30.1221 10.77 %

Flace-audio (Seconds) 11.612979 11.612 0.0084 %

Timed Linux Compila-
tion (Seconds)

233.862 203.295 13.07 %

RAM Speed SMP
(MBPS)

6557.23 6553.28 0.060 %

postmark (TPS) 202.92 188.5 7.10 %

Sunflow Rendering Sys-
tem (Seconds)

5.64 5.61 0.48 %

TABLE VI

PERCENTAGE CHANGE IN LOAD IMBALANCE W.R.T THE EXISTING LOAD

BALANCER (MULTIPLE WORKLOAD)

Benchmark Original load
balancer

Avg Load Bal-
ancer

Percentage Im-
provement

set 1 257.066 256.712 .0013 %

set 2 42.760 39.939 6.59 %

set 3 20.406 19.849 2.73 %

Average percentage Improvement = 4.86057 %

VI. CONCLUSION AND FUTURE WORK

In the linux kernel development the most important work

for better utilization of cores is load balancing. The load

balancing aims to maintain fairness with each core, i.e.

allocating proper workload to each core, but to maintain

the fairness with each core we are required to optimize

the existing load balancing approach. In the proposed work

the Average Weight load balancer maintains the fainess

with all cores. Results of the experimentation show that the

performance is improved in terms of MIPS and execution

time. The MIPS is increased for CPU bound processes and

the execution time is reduced.

A. Future Direction

In the proposed approach we have performed the load

balancing for homogenous multicore processors. This work

can be extended for heterogeneous multicore processors.

This will be a significant contribution, as processors with

heterogenous cores are being designed now and their use

will increase in future.

REFERENCES

[1] Suchi Johari, Arvind kumar, Algorithmic Approach for Applying Load
Balancing During Task Migration in Multicore System, 978-1-4799-
7683-6/14@2014 IEEE

[2] Juan M. Cebrian, daniel Sanchez, Juan L. Aragon, Stefanos Kaxiras,
Efficient intercore power and thermal balancing for multi-core pro-
cessors, Springer computing(2013) 95:537-566 DOI 10.1007/s00607-
012-0236-6

[3] Zhigang Sun, Rui Wang, Ludan Zhang, Qi Li, Liya Chen, Jin Wu.
Yi Liu, Cache-aware Scheduling for Energy Efficiency on Multi-
Processors, International Conference on Computer Distributed Control
and Intelligent Enviromental Monitoring 2012.

[4] Josue Feliu, Julio Sahuquillo, Salvador Petit, and Jose Duato, Un-
derstanding Cache Hierarchy Contention in CMPs to Improve Job
Scheduling, IEEE 26th International Parallel and Distributed Process-
ing Symposium 2012 ,pp 1530-2075.

[5] Jejurika R, Gupta R. Energy Aware Task Scheduling with Task Syn-
chronization for Embedded Real-time Systems, [J]. IEEE Trans on
Computer Aided Design o f Integrated Circuits and Systems, 2006,
pp 1024-1037.

[6] Muhammad Zakarya, Nadia Dilawar, Naveed Khan , A Survey on
Energy Efficient Load Balancing Algorithms over Multicores , Inter-
national Journal of Research in Computer Applications & Information
Technology Volume 1, Issue 1, July-September, 2013, pp. 59-67,
IASTER 2013 www.iaster.com, ISSN Online: 2347-5099, Print: 2348-
0009

[7] Geunsik Lim, Changwoo Min, YoungIk Eom, Load-Balancing for
Improving User Responsiveness on Multicore Embedded System, IT
R&D program of MKE/KEIT [10041244, SmartTV 2.0 Software
Platform].

[8] D. Bautista, J. Sahuquillo, H. Hassan, S. Petit, J. Duato, A Simple
Power-Aware Scheduling for Multicore Systems when Running Real-
Time Applications, Department of Computer Engineering (DISCA)
Universidad Politecnica de Valencia, Spain

∗

http://www.jetir.org/
http://www.iaster.com/

